金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

高二数学教学等比数列前n项和教案

来源:学大教育     时间:2015-02-11 15:22:44


一个优秀的老师不仅仅能够将自己学到的知识传授给自己的知识,还能根据新课标的要求,改变传统的教学模式,培养学生自主学习的能力,这样对同学们成绩的提高也有很大的提高,以下是学大教育高二数学教学等比数列前n项和教案。

1、等比数列的定义

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示.

注意

2、等比数列的通项公式

由a2=a1q,a3=a2q=a1q2,a4=a3q=a1q3,……,归纳得出an=a1qn-1.此公式对n=1也成立.

注意

3、等比中项

如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.

注意

4、等比数列的判定方法

(1)、an=an-1·q(n≥2),q是不为零的常数,an-1≠0{an}是等比数列.

(2)、an2=an-1·an+1(n≥2, an-1,an,an+1≠0){an}是等比数列.

(3)、an=c·qn(c,q均是不为零的常数){an}是等比数列.

5、等比数列的性质

设{an}为等比数列,首项为a1,公比为q.

(1)、当q>1,a1>0或01,a1<0或00时,{an}是递减数列;当q=1时,{an}是常数列;当q<0时,{an}是摆动数列.

(2)、an=am·qn-m(m、n∈N*).

(3)、当m+n=p+q(m、n、q、p∈N*)时,有am·an=ap·aq.

(4)、{an}是有穷数列,则与首末两项等距离的两项积相等,且等于首末两项之积.

(5)、数列{λan}(λ为不等于零的常数)仍是公比为q的等比数列;若{bn}是公比为q′的等比数列,则数列{an·bn}是公比为qq′的等比数列;数列是公比为的等比数列;{|an|}是公比为|q|的等比数列.

(6)、在{an}中,每隔k(k∈N*)项取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为qk+1.

(7)、当数列{an}是各项均为正数的等比数列时,数列{lgan}是公差为lgq的等差数列.

(8)、{an}中,连续取相邻两项的和(或差)构成公比为q的等比数列.

(9)、若m、n、p(m、n、p∈N*)成等差数列时,am、an、ap成等比数列.

6、等比数列的前n项和公式

设等比数列a1,a2,a3,…,an,…,它的前n项和是Sn=a1+a2+…+an,根据等比数列的通项公式可将Sn写成Sn=a1+a1q+a1q2+…+a1qn-1.…①

①两边乘以q得qSn=a1q+a1q2+a1q3+…+a1qn …②

两式相减得 (1-q)Sn=a1-a1qn,

由此得q≠1时等比数列{an}的前n项和的公式.

因为an=a1qn-1,所以上面公式还可以写成 .

当q=1时,Sn=na1.

以上是学大教育高二数学教学等比数列前n项和教案的基本内容,供各位老师借鉴,优秀的教学方式对提高学生成绩有很大的帮助。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956