金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

十字相乘法分解因式

来源:学大教育     时间:2014-06-03 17:51:18


不管是初中还是高中的数学学习中,我想大家都对十字相乘法都不陌生。我们在学习数学时常常会用到十字相乘法解决很多问题,可是有很多同学学不好这种方法,所以我们学大教育编辑了十字相乘法分解因式,希望能够帮助到在学习这种方法有困难的同学。

一、知识要点

1.因式分解——把一个多项式化为几个整式的积的 形式,叫做把这个多项式因式分解,也叫做把这个多项

式分解因式。

2.因式分解的方法

(1)提取公因式——如果多项式的各项有公因式,可 把这个公因式提到括号外面,将多项式写成因式乘积的形 式,这种分解因式的方法叫做提取公因式法。

提取公因式法是因式分解的最基本、最常用的方法,它的理论依据就是乘法的分配律,能找出多项式各项的公 因式是这种方法的关键,并要注意养成首先作提公因式分解的习惯。

(2)运用公式法——如果把乘法公式反过来,就可以用把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

(3)分组分解法——利用分组来分解因式的方法叫做分组分解法。

被分解的多项式中,如果项数超过三项,进行因式分解时所采用的方法常是分组分解,一般来说,分组分解法有两种类型:第一种是分组后各组有公因式,可以进一步提取公因式进行分解;第二种是分组后可以应用公司进行分解。

(4)十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。

十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式 的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)

然后按斜线交叉相乘、再相加,若有 ,则有 ,否则,需交换 的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。

3.因式分解的一般步骤

(1) 如果多项式的各项有公因式时,应先提取公因式;

(2) 如果多项式的各项没有公因式,则考虑是否能用公式法来分解;

(3) 对于二次三项式的因式分解,可考虑用十字相乘法分解;

(4) 对于多于三项的多项式,一般应考虑使用分组分解法进行。

在进行因式分解时,要结合题目的形式和特点来选择确定采用哪种方法。以上这四种方法是彼此有联系的,并不是一种类型的多项式就只能用一种方法来分解因式,要学会具体问题具体分析。

在我们做题时,可以参照下面的口诀:

首先提取公因式,然后考虑用公式;

十字相乘试一试,分组分得要合适;

四种方法反复试,最后须是连乘式。

二、学习要求

1、 正确理解因式分解的意义,会判断一个变形是不是因式分解,会判断分解所得的因式是否能再继续分解,从而得到因式分解的正确结果。要了解因式分解与整式乘法的区别和联系。

2、会正确判定多项式各项的公因式,会用提公因式的方法分解因式,并养成首先运用提公因式法分解因式的习惯。

3、熟记五个乘法公式,理解乘法公式逆向应用就是因式分解的公式。会运用换元的思想把某个代数式看做一个字母,会判断一个多项式是否符合各个公式的结构特点,并会把公式结构特点的多项式依照公式进行因式分解。

4、会运用十字相乘的方法,把某些二次三项式(或可以看做二次三项式的多项式)进行因式分解。

5、会运用先分组,再提公因式法或运用公因式法和十字相乘法进行因式分解。

※ 6、会综合运用各种方法,做较复杂的因式分解。

※ 7、会运用因式分解解决一些简单的数学问题。

以上就是十字相乘法分解因式的全部内容了,希望大家能够通过这篇文章的阅读,真正掌握十字相乘法这种解题方法,在以后的数学学习中更加努力,让自己的成绩更加优秀。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-102-8926 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956