金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

初中三年的数学公式都在这啦!

来源:学大教育     时间:2017-05-09 09:37:03


初中数学的学习离不开大量的公式记忆!这些公式不仅是对知识点的理解,也是解题的关键!不管是平时学习还是考试,我们都要记公式!数姐整理了初中三年较重要的一些公式↓↓↓这些基本上包含了我们所学的内容。

圆与弧的公式

正n边形的内角等于(n-2)×180°/n

弧长计算公式:L=nπR/180

扇形面积公式:S扇形=nπR^2/360=LR/2

内公切线长=d-(R-r)外公切线长=d-(R+r)

①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-rr)⑤两圆内含dr)

弧长计算:L=nπR/180

扇形面积:S扇形=nπR^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)

因式分解公式

平方差公式:a2-b2=(a+b)(a-b)

完全平方和公式: (a+b)2=a2+2ab+b2

完全平方差公式: (a-b)2=a2-2ab+b2

两根式: ax2+bx+c=a[x-(-b+√(b2-4ac))/2a][x-(-b-√(b2-4ac))/2a]两根式

立方和公式:a3+ b3=(a+b)(a2-ab+b2)

立方差公式:a3- b3=(a-b)(a2+ab+b2)

完全立方和公式:(a+b)3=a3+3a2b+3ab2+b3

一元二次方程公式与判别式

一元二次方程的解

根与系数的关系

x1+X2=-b/a          X1*X2=c/a       注:韦达定理

判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程无实根,但在复数范围内有2个复根。

三角不等式
|a+b|  ≤  |a|+|b| |a-b|  ≤  |a|+|b| |a|≤b  <=>  -b≤a≤b |a-b|  ≥  |a|-|b|-|a|  ≤  a  ≤  |a|

等差数列公式 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n
=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)

=n2 2+4+6+8+10+12+14+…+(2n)

=n(n+1)12+22+32+42+52+62+72+82+…+n2

=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3

=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)

=n(n+1)(n+2)/3

三角函数的诱导公式 常用的诱导公式有以下几组:

公式一: 设α为任意角,终边相同的角同一三角函数的值相等:

sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα

公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα

公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα

三角函数公式:两角和差公式

sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ

三角函数公式:倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

三角函数公式:半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2) =-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2) =-√((1+cosA)/((1-cosA))

三角函数公式:和差化积

sina*cosb=[sin(a+b)+sin(a-b)]/2 cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2

相关推荐

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956